Adenoviral-mediated expression of antisense RNA to fibroblast growth factors disrupts murine vascular development.

نویسندگان

  • I Leconte
  • J C Fox
  • H S Baldwin
  • C A Buck
  • J L Swain
چکیده

Fibroblast growth factors (FGFs) are expressed in the developing embryo and are postulated to regulate embryonic and vascular growth. The goal of this study was to elucidate the role of basic fibroblast growth factor (FGF-2) in early murine embryonic cardiovascular development in the mouse embryo. Gestation day 7.5 embryos were harvested and placed in culture, and 12 hr later replication-defective adenovirus (0.5 x 10(6) plaque forming units) encoding either beta-galactosidase or antisense FGF-2 RNA was injected into the sinus venosus of the cultured embryos. Embryos receiving only replication-defective adenovirus expressing the beta-galactosidase gene continued to develop normally over the next 12 hr. In contrast, those receiving adenovirus encoding antisense FGF-2 RNA displayed marked morphogenetic abnormalities, including cessation of growth and abnormal yolk sac vascular development, even though the embryonic hearts continued to beat. Abnormal development of the yolk sac vasculature was confirmed by microangiography and by histologic examination. Coinjection of virus carrying FGF-2 cDNA in the sense orientation reversed the effects of antisense FGF-2 RNA expression. These results confirm the efficacy of the replication-defective adenovirus for targeting gene expression to the developing vasculature and provide evidence for a critical role of FGF in the normal vascular assembly in the early embryo. Cessation of embryonic growth on expression of antisense FGF-2 RNA was most likely attributable to failure of efficient circulation of the early embryonic blood cells from the yolk sac into the embryo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO

The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...

متن کامل

Effects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli

Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...

متن کامل

Vascular endothelial growth factor and basic fibroblast growth factor expression in esophageal adenocarcinoma and Barrett esophagus.

OBJECTIVE This study was undertaken to investigate the role of the angiogenic factors vascular endothelial growth factor and basic fibroblast growth factor in the development and progression of Barrett esophagus and adenocarcinomas of the esophagus and gastroesophageal junction. METHODS Vascular endothelial growth factor and basic fibroblast growth factor messenger RNA expression levels, rela...

متن کامل

Basic Fibroblast Growth Factor Melanocytic Cells by Vascular Endothelial Growth Factor and Modulation of Angiogenesis and Tumorigenicity of Human

Human melanoma cells express two prominent angiogenic factors, e.g., vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF/fibroblast growth factor-2). In this study, we report on the relative contribution of these two factors to in vitro and in vivo growth of a tumorigenic melanoma cell line (WM164) and nontumorigenic, immortalized melanocytes (FM516SV). Overexpres...

متن کامل

Forced Expression of Antisense 14-3-3β RNA Suppresses Tumor Cell Growth in Vitro and in Vivo

The 14-3-3 family proteins are key regulators of various signal transduction pathways including malignant transformation. Previously, we found that the expression of 14-3-3β gene is deregulated as well as c-myc gene in aflatoxin B1 (AFB1)-induced rat hepatoma K1 and K2 cells. To elucidate the implication of 14-3-3β in tumor cell growth, in this paper we analyzed the effect of forced expression ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental dynamics : an official publication of the American Association of Anatomists

دوره 213 4  شماره 

صفحات  -

تاریخ انتشار 1998